Respuesta :

gmany

You can use a tangent:

[tex]tangent=\dfrac{opposite}{adjacent}[/tex]

We have opposite = 17 and adjacent = x.

[tex]\tan30^o=\dfrac{\sqrt3}{3}[/tex]

substitute:

[tex]\dfrac{17}{x}=\dfrac{\sqrt3}{3}[/tex]       cross multiply

[tex]x\sqrt3=(3)(17)[/tex]     multiply both sides by √3

[tex]x(\sqrt3)(\sqrt3)=51\sqrt3[/tex]

[tex]3x=51\sqrt3[/tex]      divide both sides by 3

[tex]x=17\sqrt3[/tex]

Use the Pythagorean theorem:

[tex]y^2=(17\sqrt3)^2+17^2\\\\y^2=289(\sqrt3)^2+289\\\\y^2=289\cdot3+289\\\\y^2=867+289\\\\y^2=1156\to y=\sqrt{1156}\\\\y=34[/tex]

-------------------------------------------------------------------------------------------------

Other method.

[tex]30^o-60^o-90^o[/tex] triangle.

The sides are in the ratio [tex]1:2:\sqrt3\to17:y:x[/tex]

Therefore

[tex]17:(2\cdot17):(17\sqrt3)\to17:34:17\sqrt3\to x=34,\ y=17\sqrt3[/tex]


ACCESS MORE