Respuesta :
[tex]\dfrac{2}{7k}(k-7)\qquad|\text{use distributive property}\\\\=\left(\dfrac{2}{7k}\right)(k)-\left(\dfrac{2}{7k}\right)(7)=\dfrac{2}{7}-\dfrac{2}{k}[/tex]
ANSWER
B.
[tex] \frac{2}{7k} (k - 7) = \frac{2}{7}- \frac{2}{k} [/tex]
EXPLANATION
The given expression is
[tex] \frac{2}{7k} (k - 7)[/tex]
where k≠0
We expand the bracket to get,
[tex] \frac{2}{7k} (k - 7) = \frac{2}{7k} \times k - \frac{2}{7k} \times 7[/tex]
We now cancel out the common factors to obtain,
[tex] \frac{2}{7k} (k - 7) = \frac{2}{7} \times 1- \frac{2}{k} \times 1[/tex]
We now simplify to obtain,
[tex] \frac{2}{7k} (k - 7) = \frac{2}{7}- \frac{2}{k} [/tex]
The correct answer is option B.
B.
[tex] \frac{2}{7k} (k - 7) = \frac{2}{7}- \frac{2}{k} [/tex]
EXPLANATION
The given expression is
[tex] \frac{2}{7k} (k - 7)[/tex]
where k≠0
We expand the bracket to get,
[tex] \frac{2}{7k} (k - 7) = \frac{2}{7k} \times k - \frac{2}{7k} \times 7[/tex]
We now cancel out the common factors to obtain,
[tex] \frac{2}{7k} (k - 7) = \frac{2}{7} \times 1- \frac{2}{k} \times 1[/tex]
We now simplify to obtain,
[tex] \frac{2}{7k} (k - 7) = \frac{2}{7}- \frac{2}{k} [/tex]
The correct answer is option B.