Respuesta :

Given equation is :

[tex]2x^{5}+10x^{4}-22x^{3}[/tex]=0

Taking out [tex]2x^{3}[/tex] common we get,

[tex]x^{2}+5x-11[/tex]=0

Now solving this we get,

As 11 is not factor-able, we will solve it using the formula,

[tex]x=\frac{-b+\sqrt{b^{2}-4ac}}{2a}[/tex]

a=1 b=5 and c=-11

we get,

[tex]x=\frac{-5+\sqrt{69} }{2}[/tex] and [tex]x=\frac{-5-\sqrt{69} }{2}[/tex]

Answer:

The factor of [tex]2x^{5} + 10x^{4} - 22x^{3}[/tex] is [tex]2x^{3} ({x^{2}}{} + {5x^{}}} - {11})[/tex]

Step-by-step explanation:

Given:

[tex]2x^{5} + 10x^{4} - 22x^{3}[/tex]

Required:

Factorize

To factor a number means to take the number apart to find its factors

To factor [tex]2x^{5} + 10x^{4} - 22x^{3}[/tex] means we look for factors that can divide individual unit of the algebraic expression to the barest minimum

One factor that can divide through is [tex]2x^{3}[/tex]

We then divide each individual unit of the expression with [tex]2x^{3}[/tex]

So, we write [tex]2x^{5} + 10x^{4} - 22x^{3}[/tex] as

[tex]2x^{3} (\frac{2x^{5}}{2x^{3}} + \frac{10x^{4} }{2x^{3}} -\frac{22x^{3}}{2x^{3}})[/tex]

Divide expression in bracket

[tex]\frac{2x^{5}}{2x^{3}} = \frac{2x^{5-3}}{2}[/tex]

[tex]\frac{2x^{5}}{2x^{3}} ={x^{2}}[/tex]

[tex]\frac{10x^{4} }{2x^{3}} = \frac{10x^{4-3} }{2}[/tex]

[tex]\frac{10x^{4} }{2x^{3}} = \frac{10x}{2}[/tex]

[tex]\frac{10x^{4} }{2x^{3}} = {5x}[/tex]

[tex]\frac{22x^{3}}{2x^{3}} = \frac{22x^{3-3}}{2}[/tex]

[tex]\frac{22x^{3}}{2x^{3}} = \frac{22x^{0}}{2}[/tex]

[tex]\frac{22x^{3}}{2x^{3}} = \frac{22 * 1}{2}[/tex]

[tex]\frac{22x^{3}}{2x^{3}} = 11[/tex]

Bringing these results together, we have

[tex]2x^{3} (\frac{2x^{5}}{2x^{3}} + \frac{10x^{4} }{2x^{3}} -\frac{22x^{3}}{2x^{3}})[/tex] = [tex]2x^{3} ({x^{2}}{} + {5x^{}}} - {11})[/tex]

Hence the factor of [tex]2x^{5} + 10x^{4} - 22x^{3}[/tex] is [tex]2x^{3} ({x^{2}}{} + {5x^{}}} - {11})[/tex]

ACCESS MORE