Answer-
A. Brandon’s sound intensity level is 1/4th as compared to Ahmad’s.
Solution-
Given that, loudness measured in dB is
[tex]L=10\log \frac{I}{I_0}[/tex]
Where,
I = Sound intensity,
I₀ = 10⁻¹² and is the least intense sound a human ear can hear
Given in the question,
I₁ = Intensity at Brandon's = 10⁻¹⁰
I₂ = Intensity at Ahmad's = 10⁻⁴
Then,
[tex]L_1=10\log \frac{I_1}{I_0}=10\log \frac{10^{-10}}{10^{-12}}=10\log \frac{1}{10^{-2}}=10\log 10^{2}=2\times10\log 10=20[/tex]
[tex]L_2=10\log \frac{I_2}{I_0}=10\log \frac{10^{-4}}{10^{-12}}=10\log \frac{1}{10^{-8}}=10\log 10^{8}=8\times10\log 10=80[/tex]
[tex]\therefore \frac{L_1}{L_2} =\frac{20}{80} =\frac{1}{4}[/tex]