Respuesta :


ANSWER

The vertical asymptotes are


[tex]\Rightarrow x=2\:or\:x=-1[/tex]

EXPLANATION

We have

[tex]f(x)=\frac{x^2+4}{4x^2-4x-8}[/tex]


For vertical asymptotes we set the denominator to zero and solve the quadratic equation;

[tex]4x^2-4x-8=0[/tex]


[tex]\Rightarrow x^2-x-2=0[/tex]

We split the middle term to obtain,

[tex]x^2+x-2x-2=0[/tex]

[tex]\Rightarrow x(x+1)-2(x+1)=0[/tex]


[tex]\Rightarrow (x-2)(x+1)=0[/tex]


[tex]\Rightarrow x=2\:or\:x=-1[/tex]


Therefore the vertical asymptotes are


[tex]x=2\:or\:x=-1[/tex]





The vertical asymptotes are x = 2 and x = -1

How to determine the vertical asymptote?

[tex]f(x)=\frac{x^2+4}{4x^2-4x-8}[/tex]

Set the denominator to 0

[tex]4x^2-4x-8 = 0[/tex]

Divide through by 4

[tex]x^2-x-2 = 0[/tex]

Expand

[tex]x^2+x-2x-2 = 0[/tex]

Factorize

[tex]x(x+1)-2(x+1) = 0[/tex]

Factor out x + 1

[tex](x-2)(x+1) = 0[/tex]

Solve for x

x = 2 or x = -1

Hence, the vertical asymptotes are x = 2 and x = -1

Read more about vertical asymptotes at:

https://brainly.com/question/8493280

ACCESS MORE