Respuesta :
ANSWER
The vertical asymptotes are
[tex]\Rightarrow x=2\:or\:x=-1[/tex]
EXPLANATION
We have
[tex]f(x)=\frac{x^2+4}{4x^2-4x-8}[/tex]
For vertical asymptotes we set the denominator to zero and solve the quadratic equation;
[tex]4x^2-4x-8=0[/tex]
[tex]\Rightarrow x^2-x-2=0[/tex]
We split the middle term to obtain,
[tex]x^2+x-2x-2=0[/tex]
[tex]\Rightarrow x(x+1)-2(x+1)=0[/tex]
[tex]\Rightarrow (x-2)(x+1)=0[/tex]
[tex]\Rightarrow x=2\:or\:x=-1[/tex]
Therefore the vertical asymptotes are
[tex]x=2\:or\:x=-1[/tex]
The vertical asymptotes are x = 2 and x = -1
How to determine the vertical asymptote?
[tex]f(x)=\frac{x^2+4}{4x^2-4x-8}[/tex]
Set the denominator to 0
[tex]4x^2-4x-8 = 0[/tex]
Divide through by 4
[tex]x^2-x-2 = 0[/tex]
Expand
[tex]x^2+x-2x-2 = 0[/tex]
Factorize
[tex]x(x+1)-2(x+1) = 0[/tex]
Factor out x + 1
[tex](x-2)(x+1) = 0[/tex]
Solve for x
x = 2 or x = -1
Hence, the vertical asymptotes are x = 2 and x = -1
Read more about vertical asymptotes at:
https://brainly.com/question/8493280