ANSWER
[tex](1,\:\:44.625)[/tex]
[tex](2,\:\:44.25)[/tex]
[tex](3,\:\:43.875)[/tex]
EXPLANATION
We chose a value for [tex]x[/tex] and substitute in to the equation and solve for [tex]y[/tex].
If Jon works for [tex]x=1[/tex] hour,
Then the equation becomes,
[tex]7.5(1)+20y=900[/tex]
We make [tex]y[/tex] the subject
[tex]7.5+20y=900[/tex]
[tex]20y=900-7.5[/tex]
[tex]20y=892.5[/tex]
[tex]y=\frac{892.5}{20}[/tex]
[tex]y=44.625[/tex]
If Jon works for [tex]x=2[/tex] hours,
Then the equation becomes,
[tex]7.5(2)+20y=900[/tex]
We make [tex]y[/tex] the subject
[tex]15+20y=900[/tex]
[tex]20y=900-15[/tex]
[tex]20y=885[/tex]
[tex]y=\frac{885}{20}[/tex]
[tex]y=44.25[/tex]
If Jon works for [tex]x=3[/tex] hours,
Then the equation becomes,
[tex]7.5(3)+20y=900[/tex]
We make [tex]y[/tex] the subject
[tex]22.5+20y=900[/tex]
[tex]20y=900-22.5[/tex]
[tex]20y=877.5[/tex]
[tex]y=\frac{877.5}{20}[/tex]
[tex]y=43.875[/tex]
Therefore three combinations of hours worked and lawns mowed are
[tex](1,44.625)[/tex]
[tex](2,44.25)[/tex]
[tex](3,43.875)[/tex]