contestada

7.5x+20y=900 models how many hours (x) and how many lawns mowed (y) Jon has to work in order to save $900. Give 3 combinations of hours worked and lawns mowed that result in $900.

Respuesta :

ANSWER

[tex](1,\:\:44.625)[/tex]


[tex](2,\:\:44.25)[/tex]

[tex](3,\:\:43.875)[/tex]


EXPLANATION

We chose a value for [tex]x[/tex] and substitute in to the equation and solve for [tex]y[/tex].

If Jon works for [tex]x=1[/tex] hour,

Then the equation becomes,

[tex]7.5(1)+20y=900[/tex]

We make [tex]y[/tex] the subject

[tex]7.5+20y=900[/tex]

[tex]20y=900-7.5[/tex]


[tex]20y=892.5[/tex]


[tex]y=\frac{892.5}{20}[/tex]


[tex]y=44.625[/tex]




If Jon works for [tex]x=2[/tex] hours,

Then the equation becomes,

[tex]7.5(2)+20y=900[/tex]

We make [tex]y[/tex] the subject

[tex]15+20y=900[/tex]


[tex]20y=900-15[/tex]


[tex]20y=885[/tex]


[tex]y=\frac{885}{20}[/tex]


[tex]y=44.25[/tex]


If Jon works for [tex]x=3[/tex] hours,

Then the equation becomes,

[tex]7.5(3)+20y=900[/tex]

We make [tex]y[/tex] the subject

[tex]22.5+20y=900[/tex]


[tex]20y=900-22.5[/tex]


[tex]20y=877.5[/tex]


[tex]y=\frac{877.5}{20}[/tex]


[tex]y=43.875[/tex]


Therefore three combinations of hours worked and lawns mowed are



[tex](1,44.625)[/tex]


[tex](2,44.25)[/tex]

[tex](3,43.875)[/tex]





ACCESS MORE