Respuesta :

Answer:

the second part to the question is

a,c,d

Step-by-step explanation:

Expressions can be expressed using logarithms

The results of the expression are:

[tex]\mathbf{log_3(27) = 3}[/tex]

[tex]\mathbf{log_{11}(121) = 2}[/tex]

[tex]\mathbf{log_{5}(125) = 3}[/tex]

[tex]\mathbf{log_{2}(128) = 7}[/tex]

[tex]\mathbf{(a)\ log_3(27)}[/tex]

Express 27 as 3^3

[tex]\mathbf{log_3(27) = log_3(3^3)}[/tex]

Apply law of logarithm

[tex]\mathbf{log_3(27) = 3log_3(3)}[/tex]

So, we have:

[tex]\mathbf{log_3(27) = 3\times 1}[/tex]

[tex]\mathbf{log_3(27) = 3}[/tex]

[tex]\mathbf{(b)\ log_{11}(121)}[/tex]

Express 121 as 11^3

[tex]\mathbf{log_{11}(121) = log_{11}(11^2)}[/tex]

Apply law of logarithm

[tex]\mathbf{log_{11}(121) = 2log_{11}11}[/tex]

So, we have:

[tex]\mathbf{log_{11}(121) = 2\times 1}[/tex]

[tex]\mathbf{log_{11}(121) = 2}[/tex]

[tex]\mathbf{(c)\ log_{5}(125)}[/tex]

Express 125 as 5^3

[tex]\mathbf{log_{5}(125) = log_5(5^3)}[/tex]

Apply law of logarithm

[tex]\mathbf{log_{5}(125) = 3log_5(5)}[/tex]

So, we have:

[tex]\mathbf{log_{5}(125) = 3\times 1}[/tex]

[tex]\mathbf{log_{5}(125) = 3}[/tex]

[tex]\mathbf{dc)\ log_{2}(128)}[/tex]

Express 128 as 2^7

[tex]\mathbf{log_{2}(128) = log_2{2^7}}[/tex]

Apply law of logarithm

[tex]\mathbf{log_{2}(128) = 7log_2{2}}[/tex]

So, we have:

[tex]\mathbf{log_{2}(128) = 7\times 1}[/tex]

[tex]\mathbf{log_{2}(128) = 7}[/tex]

Read more about logarithms at:

https://brainly.com/question/8657113

ACCESS MORE