Respuesta :
Answer:
the second part to the question is
a,c,d
Step-by-step explanation:
Expressions can be expressed using logarithms
The results of the expression are:
[tex]\mathbf{log_3(27) = 3}[/tex]
[tex]\mathbf{log_{11}(121) = 2}[/tex]
[tex]\mathbf{log_{5}(125) = 3}[/tex]
[tex]\mathbf{log_{2}(128) = 7}[/tex]
[tex]\mathbf{(a)\ log_3(27)}[/tex]
Express 27 as 3^3
[tex]\mathbf{log_3(27) = log_3(3^3)}[/tex]
Apply law of logarithm
[tex]\mathbf{log_3(27) = 3log_3(3)}[/tex]
So, we have:
[tex]\mathbf{log_3(27) = 3\times 1}[/tex]
[tex]\mathbf{log_3(27) = 3}[/tex]
[tex]\mathbf{(b)\ log_{11}(121)}[/tex]
Express 121 as 11^3
[tex]\mathbf{log_{11}(121) = log_{11}(11^2)}[/tex]
Apply law of logarithm
[tex]\mathbf{log_{11}(121) = 2log_{11}11}[/tex]
So, we have:
[tex]\mathbf{log_{11}(121) = 2\times 1}[/tex]
[tex]\mathbf{log_{11}(121) = 2}[/tex]
[tex]\mathbf{(c)\ log_{5}(125)}[/tex]
Express 125 as 5^3
[tex]\mathbf{log_{5}(125) = log_5(5^3)}[/tex]
Apply law of logarithm
[tex]\mathbf{log_{5}(125) = 3log_5(5)}[/tex]
So, we have:
[tex]\mathbf{log_{5}(125) = 3\times 1}[/tex]
[tex]\mathbf{log_{5}(125) = 3}[/tex]
[tex]\mathbf{dc)\ log_{2}(128)}[/tex]
Express 128 as 2^7
[tex]\mathbf{log_{2}(128) = log_2{2^7}}[/tex]
Apply law of logarithm
[tex]\mathbf{log_{2}(128) = 7log_2{2}}[/tex]
So, we have:
[tex]\mathbf{log_{2}(128) = 7\times 1}[/tex]
[tex]\mathbf{log_{2}(128) = 7}[/tex]
Read more about logarithms at:
https://brainly.com/question/8657113