Respuesta :
Answer:
The maximum area of the second board must be [tex](5x^2+3x-6)[/tex] square inches.
Step-by-step explanation:
The total area of two different size boards cannot exceed [tex](7x^2-6x+2)[/tex] square inches.
The area of one board is [tex](2x^2-9x+8)[/tex] square inches.
Suppose, the area of the second board is [tex]y[/tex] square inches.
That means......
[tex]y+(2x^2-9x+8)\leq 7x^2-6x+2\\ \\ y\leq (7x^2-6x+2)-(2x^2-9x+8)\\ \\y \leq 7x^2-6x+2-2x^2+9x-8\\ \\ y\leq 5x^2+3x-6[/tex]
So, the maximum area of the second board must be [tex](5x^2+3x-6)[/tex] square inches.
Answer:
5x² + 3x - 6
Step-by-step explanation:
Data:
- Total area: 7x² - 6x + 2
- Area of one board: 2x² - 9x + 8
- Area of the other board: f(x)
The addition of the area of the two boards cannot exceed the total area. Then:
f(x) + 2x² - 9x + 8 ≤ 7x² - 6x + 2
f(x) ≤ 7x² - 6x + 2 - 2x² + 9x - 8
f(x) ≤ (7x² - 2x²) + (-6x + 9x) + (2 - 8)
f(x) ≤ 5x² + 3x - 6 in square inches