Respuesta :

Answer:

a. vertex = (-6, -88); axis of symmetry: x = -6

Step-by-step explanation:

For quadratic y=ax²+bx+c, the axis of symmetry is x=-b/(2a). Here, that is ...

x=-24/(2·2) = -6 . . . . . matches choice A

___

If you put the equation into vertex form, or evaluate it for x=-6, or if you use a graphing calculator to plot it, you find the vertex is (-6, -88) . . . . also matches choice A.

__

Evaluation:

(2×-6 +24)×-6 -16 = 12×-6 -16 = -72 -16 = -88. . . . . vertex is (-6, -88)

Vertex form:

y=2(x² +12x) -16 = 2(x² +12x +36) -16 -2(36) = 2(x +6)² -88 . . . . vertex is (-6, -88)

Ver imagen sqdancefan
ACCESS MORE