a gear is driven by a chain that travels 90 m/min. Find the radius of the gear if it makes 50 revolutions per minute

Respuesta :

Answer:

The radius of the gear is, 0.286624204 m

Step-by-step explanation:

A gear is driven by a chain that travels 90 m/min. If it makes 50 revolutions per minute. then find the radius of the gear

let  angular velocity be [tex]\omega[/tex] , velocity be v and  radius be r.

Given:

Angular velocity [tex](\omega)[/tex]=50 revolutions per minute

1 revolution = [tex]2\pi[/tex] radian

50 revolution= [tex]2\times50 \pi[/tex][tex]=100\pi[/tex] radian

therefore, [tex]\omega=100\pi[/tex] radian per minute

and velocity(v) = 90 meter per minute

Use formula: Velocity(v)= radius(r) [tex]\times[/tex] angular velocity [tex](\omega)[/tex]

then, we write above formula as :  [tex]r=\frac{v}{\omega}[/tex]

Substitute the value of v and [tex]\omega[/tex] to solve for r:  the constant value of pi i.e, [tex](\pi=3.14)[/tex]

[tex]r=\frac{90}{100\cdot3.14}[/tex]

[tex]r=\frac{90}{314} =0.286624204 m[/tex]     [as radian is unit less]

ACCESS MORE