Respuesta :
Answer:
[tex]s_x=0.40\ meters[/tex]
Explanation:
Given that,
Height of the table,[tex]s_y = 0.55 m[/tex]
Initial horizontal velocity, u = 1.2 m/s
We need to find the horizontal distance from the base of the table will the pen land. Let t is time taken by the pen to land. Let [tex]s_x[/tex] is the horizontal distance. It is given by :
[tex]s_x=ut[/tex]...........(1)
Using second equation of motion to find time t.
[tex]s_y=u_yt+\dfrac{1}{2}gt^2[/tex]
Since, [tex]u_y=0[/tex]
[tex]t=\sqrt{\dfrac{2s_y}{g}}[/tex]
[tex]t=\sqrt{\dfrac{2\times 0.55}{9.8}}[/tex]
t = 0.33 s
Use the value of t in equation (1) as :
[tex]s_x=1.2\times 0.33[/tex]
[tex]s_x=0.396\ m[/tex]
or
[tex]s_x=0.40\ meters[/tex]
So, the horizontal distance from the base of the table 0.4 meters. Hence, this is the required solution.