Try this option:
1. the rule: common view of the equation of the quadratic function is 'y=ax²+bx+c', where a, b and c - numbers.
2. if to substitute the given coordinates into common equation, it is possible to write 3 equations: (for (0;0)) c=0; (for (2;5)) 4a+2b+c=5; (for (5;7)) 25a+5b+c=7.
3. for the system of the linear equations:
[tex]\left \{ \begin{array}{ccc}c=0\\4a+2b+c=5\\25a+5b+c=7\end{array}\right => \ \left \{ \begin{array}{ccc}c=0\\b=97/30\\a=-11/30\end{array}\right[/tex]
4. Answer:
[tex]y= -\frac{11x^2}{30} +\frac{97x}{30}[/tex]