Answer:
The equivalent value is [tex]\sqrt{2}[/tex]
Step-by-step explanation:
Given function is: [tex]f(x)= 1-x[/tex]
For finding [tex]f(i)[/tex], first we will replace [tex]x[/tex] as [tex]i[/tex] in the given function. So.....
[tex]f(i)= 1-i[/tex]
Now, if we compare this [tex](1-i)[/tex] with the complex form [tex](a+bi)[/tex] , then we will get: [tex]a=1[/tex] and [tex]b=-1[/tex]
Formula we need to use here: [tex]|a+bi|= \sqrt{a^2+b^2}[/tex]
According to the above formula.......
[tex]|f(i)|=|1-i| =\sqrt{(1)^2+(-1)^2}= \sqrt{1+1}=\sqrt{2}[/tex]
So, the value equivalent to [tex]|f(i)|[/tex] is [tex]\sqrt{2}[/tex]