m<3 is (3x + 4) and m<5 is (2x +11)

Angles 3 and 5 are _____
A. Alternate interior angles
B. Corresponding angles
C. Same side interior angles
D. Alternate exterior angles

The equation ___ can be used to solve for x.
A. (3x+4) + (2x+11) = 180
B. (3x+4) = (2x+11)
C. (3x+4) - (2x+11) = 180

m<5= __
A. 33
B. 77
C. 103

mlt3 is 3x 4 and mlt5 is 2x 11 Angles 3 and 5 are A Alternate interior angles B Corresponding angles C Same side interior angles D Alternate exterior angles The class=

Respuesta :

Answer:

Part 1) Option C. Same side interior angles

Part 2) Option A. [tex](3x+4)+(2x+11)=180\°[/tex]

Part 3) Option B. [tex]m<5=77\°[/tex]

Step-by-step explanation:

Part 1) we know that

If p and q are parallel

then

m<3 and m<5 are consecutive interior angles or Same side interior angles

and

[tex]m<3+m<5=180\°[/tex]

Part 2) we know that

[tex]m<3+m<5=180\°[/tex] -----> by consecutive interior angles (supplementary angles)

we have that

[tex]m<3=(3x+4)[/tex]

[tex]m<5=(2x+11)[/tex]

so

substitute

[tex](3x+4)+(2x+11)=180\°[/tex]

Part 3) Find the measure of angle 5

we know that

[tex](3x+4)+(2x+11)=180\°[/tex]

Solve for x

[tex]5x+15\°=180\°[/tex]

[tex]5x=180\°-15\°[/tex]

[tex]x=165\°/5\°=33\°[/tex]

[tex]m<5=(2x+11)[/tex]

substitute the value of x

[tex]m<5=(2(33)+11)=77\°[/tex]

Answer: C, A, B

Step-by-step explanation:

ACCESS MORE