Respuesta :
Answer: 18
Step-by-step explanation:
Given : BD bisects angle ABC, measure of DBC = 79 degrees ---(1), and measure of angle ABC= 9x-4. (3)
We know that if a line bisects an angle then it means that it is dividing the angle into two equal parts.
So from the given question, we have
[tex]\angle{DBC}=\angle{DBA}=\dfrac{\angle{ABC}}{2}[/tex] (2)
From (1) and (2), we have
[tex]\dfrac{\angle{ABC}}{2}=79^{\circ}[/tex]
i.e. [tex]{\angle{ABC}=2\times79=158^{\circ}[/tex]
From (3), we have
[tex]9x-4=158\\\\\Rightarrow\ 9x=162\\\\\Rightarrow\ x=\dfrac{162}{9}=18[/tex]
Hence, the value of x = 18.
The value of x is: 18.
A diagram illustrating the given problem is attached below.
Given:
[tex]m\angle ABC = 9x-4\\m\angle DBC = 79[/tex]
Thus:
Since BD bisects angle ABC, therefore:
[tex]2(m \angle DBC) = m\angle ABC[/tex] (angle bisector)
Plug in the values and solve for x
[tex]2(79) = 9x-4\\158 = 9x -4\\158 + 4=9x-4+4\\162 = 9x[/tex](Addition Property of equality)
[tex]\frac{162}{9} =\frac{9x}{9}\\18 = x\\x = 18[/tex]
Therefore, the value of x is 18.
Learn more about angle bisector here:
https://brainly.com/question/17551294
![Ver imagen akposevictor](https://us-static.z-dn.net/files/d31/9f03248bf608517d519870aa89c0cc80.png)