Please help me with this problem (:
![Please help me with this problem class=](https://us-static.z-dn.net/files/d00/2d102a4a0df3f0c204ff61be69bacf71.png)
Answer:
f(x)=-2*(x-3)+5 when x<3
g(x)=x(x-3)+5 when x>3
Step-by-step explanation:
| | is absolute function meaning the value must be larger than or equal to zero.
So | x-3 | = -(x-3) when x<3
f(x)=-2*(x-3)+5 when x<3
| x-3 | = (x-3) when x>3
g(x)=2*(x-3)+5 when x>3
Answer:
[tex]f(x) = -2( x - 3) + 5, x \leq 3\\\\g(x) = 2(x-3)+5, x > 3[/tex]
Step-by-step explanation:
turning pt of the abs fn |x-3| is at x=3
[tex]2|x-3|=-2(x-3), x\leq 3\\\\2|x-3|=2(x-3), x>3[/tex]
so
[tex]f(x) = -2( x - 3) + 5, x \leq 3\\\\g(x) = 2(x-3)+5, x > 3[/tex]