find the value of cos(Cos^-1(sqrt2/2)-(pi/2)) a. 2 b. sqrt2 c. 2 x sqrt2 d. sqrt2/2
![find the value of cosCos1sqrt22pi2 a 2 b sqrt2 c 2 x sqrt2 d sqrt22 class=](https://us-static.z-dn.net/files/da2/301ae70f562df269bb8d408810fc57f4.jpg)
Answer:
d. [tex]\frac{\sqrt{2}}{2}[/tex]
Step-by-step explanation:
1. The first step is calculate the inverse cosine function shown in the exercise and substract this resul with π/2, as following:
[tex]cos^{-1}(\frac{\sqrt{2}}{2})-(\pi/2)=(-\pi/4)[/tex]
2. Then you have that:
[tex]cos(-\pi/4)=\frac{1}{\sqrt{2}}[/tex]
3. Simpliying:
[tex]=\frac{\sqrt{2}}{2}[/tex]
answer : option d
[tex]cos(cos^{-1}(\frac{\sqrt{2}}{2})-\frac{\pi}{2})[/tex]
LEts find [tex]cos^{-1}(\frac{\sqrt{2}}{2})[/tex]
Lets assume [tex]cos^{-1}(\frac{\sqrt{2}}{2})= x[/tex]
When we move cos^-1 to the other side then it becomes cos
[tex](\frac{\sqrt{2}}{2})= cos(x)[/tex]
So angle [tex]x=\frac{\pi}{4}[/tex]
Hence , [tex]cos^{-1}(\frac{\sqrt{2}}{2})=\frac{\pi}{4}[/tex]
We replace it in our problem
[tex]cos(\frac{\pi}{4} -\frac{\pi}{2})[/tex]
Now take common denominator 4
[tex]cos(\frac{\pi}{4} -\frac{\pi*2}{2*2})[/tex]
[tex]cos(\frac{\pi-2\pi}{4})[/tex]
[tex]cos(\frac{-\pi}{4})[/tex]
We know cos(-x) = cos(x)
[tex]cos(\frac{-\pi}{4})=cos(\frac{\pi}{4}) [/tex]
[tex]cos(\frac{\pi}{4})=\frac{\sqrt{2}}{2}[/tex]