Respuesta :
At a constant speed of 5.00 m/s, the speed at which the poodle completes a full revolution is
[tex]\left(5.00\,\dfrac{\mathrm m}{\mathrm s}\right)\left(\dfrac{1\,\mathrm{rev}}{2\pi(2.9\,\mathrm m)}\right)\approx0.2744\,\dfrac{\mathrm{rev}}{\mathrm s}[/tex]
so that its period is [tex]T=3.644\,\frac{\mathrm s}{\mathrm{rev}}[/tex] (where 1 revolution corresponds exactly to 360 degrees). We use this to determine how much of the circular path the poodle traverses in each given time interval with duration [tex]\Delta t[/tex]. Denote by [tex]\theta[/tex] the angle between the velocity vectors (same as the angle subtended by the arc the poodle traverses), then
[tex]\Delta t=0.4\,\mathrm s\implies\dfrac{3.644\,\mathrm s}{360^\circ}=\dfrac{0.4\,\mathrm s}\theta\implies\theta\approx39.56^\circ[/tex]
[tex]\Delta t=0.2\,\mathrm s\implies\dfrac{3.644\,\mathrm s}{360^\circ}=\dfrac{0.2\,\mathrm s}\theta\implies\theta\approx19.78^\circ[/tex]
[tex]\Delta t=7\times10^{-2}\,\mathrm s\implies\dfrac{3.644\,\mathrm s}{360^\circ}=\dfrac{7\times10^{-2}\,\mathrm s}\theta\implies\theta\approx6.923^\circ[/tex]
We can then compute the magnitude of the velocity vector differences [tex]\Delta\vec v[/tex] for each time interval by using the law of cosines:
[tex]|\Delta\vec v|^2=|\vec v_1|^2+|\vec v_2|^2-2|\vec v_1||\vec v_2|\cos\theta[/tex]
[tex]\implies|\Delta\vec v|=\begin{cases}3.384\,\frac{\mathrm m}{\mathrm s}&\text{for }\Delta t=0.4\,\mathrm s\\1.718\,\frac{\mathrm m}{\mathrm s}&\text{for }\Delta t=0.2\,\mathrm s\\0.6038\,\frac{\mathrm m}{\mathrm s}&\text{for }\Delta t=7\times10^{-2}\,\mathrm s\end{cases}[/tex]
and in turn we find the magnitude of the average acceleration vectors to be
[tex]\implies|\vec a|=\begin{cases}8.460\,\frac{\mathrm m}{\mathrm s^2}&\text{for }\Delta t=0.4\,\mathrm s\\8.588\,\frac{\mathrm m}{\mathrm s^2}&\text{for }\Delta t=0.2\,\mathrm s\\8.625\,\frac{\mathrm m}{\mathrm s^2}&\text{for }\Delta t=7\times10^{-2}\,\mathrm s\end{cases}[/tex]
So that takes care of parts A, C, and E. Unfortunately, without knowing the poodle's starting position, it's impossible to tell precisely in what directions each average acceleration vector points.

Otras preguntas
