Respuesta :
First we need to determine the inverse of
[tex]g(x) = 6x - 3[/tex]
Let
[tex]y = g(x)[/tex]
This implies that,
[tex]y = 6x - 3[/tex]
Now interchange x and y
[tex]x = 6y - 3[/tex]
Make y the subject
[tex]x + 3 = 6y[/tex]
[tex]y = \frac{x + 3}{6} [/tex]
Now
[tex]g {}^{ - 1} (x) = \frac{x + 3}{6} [/tex]
So
[tex]g {}^{ - 1} (9) = \frac{9 + 3}{6} [/tex]
[tex]g {}^{ - 1} (9) = \frac{12}{6} [/tex]
[tex]g {}^{ - 1} (9) = 2[/tex]
[tex]<B>The correct answer is B.</B>[/tex]
[tex]g(x) = 6x - 3[/tex]
Let
[tex]y = g(x)[/tex]
This implies that,
[tex]y = 6x - 3[/tex]
Now interchange x and y
[tex]x = 6y - 3[/tex]
Make y the subject
[tex]x + 3 = 6y[/tex]
[tex]y = \frac{x + 3}{6} [/tex]
Now
[tex]g {}^{ - 1} (x) = \frac{x + 3}{6} [/tex]
So
[tex]g {}^{ - 1} (9) = \frac{9 + 3}{6} [/tex]
[tex]g {}^{ - 1} (9) = \frac{12}{6} [/tex]
[tex]g {}^{ - 1} (9) = 2[/tex]
[tex]<B>The correct answer is B.</B>[/tex]
g(x) = 6x - 3
we find the inverse of g(x) by making x the subject of the equation:-
6x = g(x) + 3
x = (g(x) + 3) / 6
Replacing x by g-1(x) and g(x) by x:-
g-1(x) = (x + 3)/ 6
So g-1(9) = (9 + 3) / 6 = 2 answer