Respuesta :

First we need to determine the inverse of
[tex]g(x) = 6x - 3[/tex]
Let
[tex]y = g(x)[/tex]
This implies that,

[tex]y = 6x - 3[/tex]
Now interchange x and y

[tex]x = 6y - 3[/tex]
Make y the subject
[tex]x + 3 = 6y[/tex]
[tex]y = \frac{x + 3}{6} [/tex]
Now
[tex]g {}^{ - 1} (x) = \frac{x + 3}{6} [/tex]
So
[tex]g {}^{ - 1} (9) = \frac{9 + 3}{6} [/tex]
[tex]g {}^{ - 1} (9) = \frac{12}{6} [/tex]
[tex]g {}^{ - 1} (9) = 2[/tex]

[tex]<B>The correct answer is B.</B>[/tex]

g(x) =  6x - 3

we find the inverse of g(x) by making x the subject of the equation:-

6x = g(x) + 3

x = (g(x) + 3) / 6

Replacing x by g-1(x) and g(x) by x:-

g-1(x) =  (x + 3)/ 6

So g-1(9)  = (9 + 3) / 6 =  2   answer

ACCESS MORE
EDU ACCESS
Universidad de Mexico