A point G on a segment on a segment with endpoints F(4, 8) and H(10, 12) partitions the segment in a 3:4 ratio. Find G. You must show all work to receive credit.

This is for Geometry

Respuesta :

Suppose, we are given

two points as

F as (x1, y1)

H as (x2, y2)

assume  it divides  in m/n

we can use formula

[tex]G=(x,y)=(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n})[/tex]

now, we are given points as

F=(x1, y1)=(4,8)

[tex]x_1=4,y_1=8[/tex]

H=(x2, y2)=(10,12)

[tex]x_2=10, y_2=12[/tex]

[tex]\frac{m}{n} =\frac{3}{4}[/tex]

so,

[tex]m=3,n=4[/tex]

now, we can find  

[tex]x=(\frac{3*10+4*4}{3+4}, y=\frac{3*12+4*8}{3+4})[/tex]

[tex]x=\frac{46}{7} , y=\frac{68}{7}[/tex]

so, point is

[tex]G=(\frac{46}{7} , \frac{68}{7})[/tex].................Answer

RELAXING NOICE
Relax