Respuesta :

Consider the functions

[tex]f(a)=5+a^{2} and g(a) = \sqrt{a-5} -2[/tex]

Now, g ₀ f (a) = g(f(a))

[tex]g(f(a)) = g(5+a^{2} )[/tex]

[tex]=\sqrt{5+a^{2} -5} -2[/tex]

[tex]=|a| - 2[/tex]

Hence, the pair of functions that satisfies g ₀ f (a) = |a| - 2 are [tex]f(a) = 5+a^{2}[/tex] and [tex]g(a) = \sqrt{a-5}-2[/tex].


Answer:

C. [tex]f(a) = 5+a^{2}[/tex] and [tex]g(a) = \sqrt{a-5} -2[/tex]

Step-by-step explanation:

We are given with four pair of options having functions and are required to find out which pair satisfies gоf(a) = |a| - 2.

Now, the pair that satisfies this equation is [tex]f(a) = 5+a^{2}[/tex] and [tex]g(a) = \sqrt{a-5} -2[/tex].

i.e. gοf(a) = g(f(a)) = g([tex]5+a^{2}[/tex])

i.e. gοf(a) = [tex]\sqrt{5+a^{2} -5} -2[/tex]

i.e. gοf(a) = [tex]\sqrt{a^{2} } -2[/tex]

i.e. gοf(a) = |a|-2.

Hence, option third [tex]f(a) = 5+a^{2}[/tex] and [tex]g(a) = \sqrt{a-5} -2[/tex] is correct.

ACCESS MORE
EDU ACCESS
Universidad de Mexico