Answer:
Magnitude = 6.64
Direction = [tex]30.82^0[/tex] from horizontal.
Explanation:
We have horizontal component of vector Ax = 5.7 and vertical component of vector Ay = 3.4.
Magnitude of vector acting perpendicularly = [tex]\sqrt{A_x^2+A_y^2}[/tex]
Substituting
[tex]A=\sqrt{A_x^2+A_y^2} =\sqrt{5.7^2+3.4^2} =6.64[/tex]
Direction θ = [tex]tan^{-1}(\frac{A_y}{A_x} )[/tex]
Substituting
θ =[tex]tan^{-1}(\frac{A_y}{A_x} )= tan^{-1}(\frac{3.4}{5.7})=30.82^0[/tex]