Respuesta :

we are given

[tex]f(x)=\frac{1}{x}[/tex]

[tex]g(x)=x^2+5x[/tex]

(A)

(f×g)(x)=f(x)*g(x)

now, we can plug it

[tex](fXg)(x)=\frac{1}{x} (x^2+5x)[/tex]

we can simplify it

[tex](fXg)(x)=\frac{1}{x} (x(x+5))[/tex]

[tex](fXg)(x)=x+5[/tex]

(B)

Domain:

Firstly, we will find domain  of f(x) , g(x) and (fxg)(x)

and then we can find common domain

Domain of f(x):

[tex]f(x)=\frac{1}{x}[/tex]

we know that f(x) is undefined at x=0

so, domain will be

[tex](-\infty,0)[/tex]∪[tex](0,\infty)[/tex]

Domain of g(x):

[tex]g(x)=x^2+5x[/tex]

Since, it is polynomial

so, it is defined for all real values of x

now, we can find common domain

so, domain will be

[tex](-\infty,0)[/tex]∪[tex](0,\infty)[/tex]..............Answer

Range:

Firstly, we will find range of f(x) , g(x) and (fxg)(x)

and then we can find common range

Range of f(x):

[tex]f(x)=\frac{1}{x}[/tex]

we know that range is all possible values of y for which x is defined

since, horizontal asymptote will be at y=0

so, range is

[tex](-\infty,0)[/tex]∪[tex](0,\infty)[/tex]

Range of g(x):

[tex]g(x)=x^2+5x[/tex]

Since, it is quadratic equation

so, its range will be

[tex][-6.25,\infty)[/tex]

now, we can find common range

so, range will be

[tex](-6.25,0)[/tex]∪[tex](0,\infty)[/tex].............Answer

ACCESS MORE