we are given
[tex]f(x)=\frac{1}{x}[/tex]
[tex]g(x)=x^2+5x[/tex]
(A)
(f×g)(x)=f(x)*g(x)
now, we can plug it
[tex](fXg)(x)=\frac{1}{x} (x^2+5x)[/tex]
we can simplify it
[tex](fXg)(x)=\frac{1}{x} (x(x+5))[/tex]
[tex](fXg)(x)=x+5[/tex]
(B)
Domain:
Firstly, we will find domain of f(x) , g(x) and (fxg)(x)
and then we can find common domain
Domain of f(x):
[tex]f(x)=\frac{1}{x}[/tex]
we know that f(x) is undefined at x=0
so, domain will be
[tex](-\infty,0)[/tex]∪[tex](0,\infty)[/tex]
Domain of g(x):
[tex]g(x)=x^2+5x[/tex]
Since, it is polynomial
so, it is defined for all real values of x
now, we can find common domain
so, domain will be
[tex](-\infty,0)[/tex]∪[tex](0,\infty)[/tex]..............Answer
Range:
Firstly, we will find range of f(x) , g(x) and (fxg)(x)
and then we can find common range
Range of f(x):
[tex]f(x)=\frac{1}{x}[/tex]
we know that range is all possible values of y for which x is defined
since, horizontal asymptote will be at y=0
so, range is
[tex](-\infty,0)[/tex]∪[tex](0,\infty)[/tex]
Range of g(x):
[tex]g(x)=x^2+5x[/tex]
Since, it is quadratic equation
so, its range will be
[tex][-6.25,\infty)[/tex]
now, we can find common range
so, range will be
[tex](-6.25,0)[/tex]∪[tex](0,\infty)[/tex].............Answer