Let
t---------> the time in years
y--------> the salary in dollars
we know that
Jessica's salary
[tex]y=36,000(1.031)^{t}[/tex]
[tex]y> 45,000[/tex]
so
[tex]36,000(1.031)^{t} > 45,000[/tex]
[tex](1.031)^{t} > 1.25[/tex]
Solve for t
applying log both sides
[tex]t*log(1.031) > log(1.25)[/tex]
[tex]t > 7.31\ years[/tex]
Morgan's salary
[tex]y=38,000(1.025)^{t}[/tex]
[tex]y> 45,000[/tex]
so
[tex]38,000(1.025)^{t} > 45,000[/tex]
[tex](1.025)^{t} > 1.18[/tex]
Solve for t
applying log both sides
[tex]t*log(1.025) > log(1.18)[/tex]
[tex]t > 6.85\ years[/tex]
therefore
the answers are
Jessica's salary
a) The inequality is equal to -----> [tex]36,000(1.031)^{t} > 45,000[/tex]
b) Her salary surpasses [tex]\$45,000[/tex] in the 8th year
Morgan's salary
a) The inequality is equal to -----> [tex]38,000(1.025)^{t} > 45,000[/tex]
b) Her salary surpasses [tex]\$45,000[/tex] in the 7th year