Initial velocity = [tex]\(v_0\)[/tex]
acceleration in the downward direction = -9.8 [tex]\(\frac {m}{s^2}\)[/tex]
Final velocity at the highest point = 0
Maximum height reached = 0.420 m
Now, Using third equation of motion:
[tex]\(v^2 = {v_0}^{2} + 2aH[/tex]
[tex]\(0^2 = {v_0}^{2} - 2 \times 9.8 \times 0.420[/tex]
[tex]\({v_0}^{2} = 2 \times 9.8 \times 0.420\)[/tex]
[tex]\(v_0 = 2.869 \frac {m}{s}\)[/tex]
Velocity with which the flea jumps = [tex]\(2.869 \frac {m}{s}\)[/tex]
Let the time for half journey be t.
[tex]\(v = v_0 + at\)[/tex]
[tex]\( t = \frac{2.869}{9.8}\)[/tex]
t = 0.2927 s
Total time flea stayed in air = [tex]\( 2 \times 0.2927\)[/tex]
T = 0.5854 s