Respuesta :

gmany

[tex]g(t)=t^2-t\\\\f(x)=1+x\\\\f(2g(1))=?\\\\g(1)=\\_{\text{put t=1 to the equation of g(t)}}\\\\=1^2-1=1-1=0\\---------------\\2g(1)=2(0)=0\\\\f(2g(1))=\\_{\text{put x-0 to the equation of f(x)}}\\\\=1+0=1\\\\Answer:\ f(2g(1))=1[/tex]

Answer:

The indicated value f(2g(1)) is: 1

Step-by-step explanation:

We are given two functions f(x) in terms of variable 'x' and g(t) in terms of variable 't' as:

                   [tex]g(t)=t^2-t[/tex]

and          [tex]f(x)=1+x[/tex]

Now we are asked to find the value of the composite function:

[tex]f(2g(1))[/tex]

We know that:

[tex]g(1)=1^2-1\\\\g(1)=0[/tex]

Hence,

[tex]f(2g(1))=f(2\times 0)=f(0)\\\\\\f(0)=1+0\\\\\\f(0)=1[/tex]

                   Hence, the indicated value is:

                                     1