Respuesta :
Use the formula a^(x/n) = (n)√a^x (note it is a small n)
(5x^4y^3)^(2/9) = Small 9
Convert.
[tex]\sqrt{9{{(25x^{8})y^9 }}}[/tex] is your answer
hope this helps
So here are a few things about exponents you should know:
- Fractional exponents to radicals: [tex]x^\frac{m}{n}=\sqrt[n]{x^m}[/tex]
- Powering a power: [tex](x^m)^n=x^{m*n}[/tex]
So firstly, convert the fractional exponent to a radical:
[tex](5x^4y^3)^\frac{2}{9}=\sqrt[9]{(5x^4y^3)^2}[/tex]
Next, solve the outer power:
[tex]\sqrt[9]{(5x^4y^3)^2} =\sqrt[9]{5^2x^{4*2}y^{3*2}} =\sqrt[9]{25x^8y^6}[/tex]
Your final answer is [tex]\sqrt[9]{25x^8y^6}[/tex]