Respuesta :
The answer is 83.1384cm²
I wrote a solution but was told that my answer either contains a link or inappropriate words.
I had not included any link or appropriate words.
Answer:
[tex]48\sqrt{3}[/tex] cm².
Step-by-step explanation:
Given information: Trapezoid ABCD with bases AB and CD, m∠C=m∠D=60°, AB = BC = 8 cm.
m∠C=m∠D=, two base angles are same. It means ABCD is an isosceles trapezoid.
Draw perpendiculars from A and B on side CD. Both triangles ADE and BCF are congruent.
In a right angled triangle,
[tex]\cos \theta =\frac{adjacent}{hypotenuse}[/tex]
[tex]\sin \theta =\frac{opposite}{hypotenuse}[/tex]
In triangle ADE,
[tex]\cos 60 =\frac{DE}{AD}[/tex]
[tex]\frac{1}{2}=\frac{DE}{8}[/tex]
[tex]\frac{8}{2}=DE[/tex]
[tex]4=DE[/tex]
The value of DE is 4.
[tex]\sin 60 =\frac{AE}{AD}[/tex]
[tex]\frac{\sqrt{3}}{2} =\frac{AE}{8}[/tex]
[tex]\frac{8\sqrt{3}}{2} =AE[/tex]
[tex]4\sqrt{3}=AE[/tex]
The height of the trapezoid is [tex]4\sqrt{3}[/tex]. The length of base DC is
[tex]DC=DE+EF+FC[/tex]
[tex]DC=4+8+4=16[/tex]
The area of a trapezoid is
[tex]A=\frac{a+b}{2}\times h[/tex]
where, a and b are bases of the trapezoid.
[tex]A=\frac{8+16}{2}\times 4\sqrt{3}[/tex]
[tex]A=12\times 4\sqrt{3}[/tex]
[tex]A=48\sqrt{3}[/tex]
Therefore the area of trapezoid ABCD is [tex]48\sqrt{3}[/tex] cm².
![Ver imagen erinna](https://us-static.z-dn.net/files/db2/4d0b39fd0230f234111b187694361c2e.jpg)