Respuesta :

The answer is 83.1384cm²

I wrote a solution but was told that my answer either contains a link or inappropriate words.

I had not included any link or appropriate words.

Answer:

[tex]48\sqrt{3}[/tex] cm².

Step-by-step explanation:

Given information: Trapezoid ABCD with bases AB and CD, m∠C=m∠D=60°, AB = BC = 8 cm.

m∠C=m∠D=, two base angles are same. It means ABCD is an isosceles trapezoid.

Draw perpendiculars from A and B on side CD. Both triangles ADE and BCF are congruent.

In a right angled triangle,

[tex]\cos \theta =\frac{adjacent}{hypotenuse}[/tex]

[tex]\sin \theta =\frac{opposite}{hypotenuse}[/tex]

In triangle ADE,

[tex]\cos 60 =\frac{DE}{AD}[/tex]

[tex]\frac{1}{2}=\frac{DE}{8}[/tex]

[tex]\frac{8}{2}=DE[/tex]

[tex]4=DE[/tex]

The value of DE is 4.

[tex]\sin 60 =\frac{AE}{AD}[/tex]

[tex]\frac{\sqrt{3}}{2} =\frac{AE}{8}[/tex]

[tex]\frac{8\sqrt{3}}{2} =AE[/tex]

[tex]4\sqrt{3}=AE[/tex]

The height of the trapezoid is [tex]4\sqrt{3}[/tex]. The length of base DC is

[tex]DC=DE+EF+FC[/tex]

[tex]DC=4+8+4=16[/tex]

The area of a trapezoid is

[tex]A=\frac{a+b}{2}\times h[/tex]

where, a and b are bases of the trapezoid.

[tex]A=\frac{8+16}{2}\times 4\sqrt{3}[/tex]

[tex]A=12\times 4\sqrt{3}[/tex]

[tex]A=48\sqrt{3}[/tex]

Therefore the area of trapezoid ABCD is [tex]48\sqrt{3}[/tex] cm².

Ver imagen erinna
ACCESS MORE