Area of rhombus = [tex]\frac{xy}{2}[/tex]
where x and y are diagonals.
Given length of one diagonal is 4.5 dm
So, let x= 4.5dm
1 dm = 10 cm
4.5dm= 45cm
area = [tex]\frac{xy}{2}[/tex]
so, [tex]540 = \frac{45y}{2}[/tex]
y = 24 cm
The two diagonals are x= 45cm and y = 24cm
Since diagonals bisect each other, we get 22.5cm and 12cm
Using right triangle formula
[tex]\frac{1}{r^{2} } = \frac{1}{22.5^{2}} + \frac{1}{12^{2}}[/tex]
[tex]\frac{1}{r^{2} } =\frac{12^{2}+22.5^{2}}{22.5^{2}*12^{2}}[/tex]
[tex]r^{2} = \frac{22.5^{2} *12^{2}}{12^{2}+22.5^{2}}[/tex]
r = 10.588cm
Distance of center to the side = [tex]\frac{10.588}{2}[/tex] = 5.294 cm