Respuesta :

1/64, because (-1/4)/2 is -1/8, and -1/8  ^2 is 1/64
For this case we have the following polynomial:
 [tex]x^2 - \frac{1}{4}x + k [/tex]
 We suppose that we have a standard equation of the form:
 [tex]ax ^ 2 + bx + c [/tex]
 To make a perfect square trinomial, we need to complete the square.
 Therefore, the value of c is:
 [tex]c = (\frac{b}{2})^2 [/tex]
 Using this definition for this case, we have:
 [tex]k = (\frac{\frac{-1}{4}}{2})^2[/tex]
 [tex]k= ( \frac{-1}{8} )^2[/tex]
 [tex]k = \frac{1}{64} [/tex]
 Therefore, the perfect square trinomial is:
 [tex]x^2 - \frac{1}{4}x + \frac{1}{64} [/tex]
 Answer:
 
The value of k is:
 
[tex]k = \frac{1}{64} [/tex]