Respuesta :
The simplified quotient is the expression reduced to its simplest term.
The simplified quotient of [tex]\mathbf{\frac{t^2 - 36}{3} \div \frac{t^2 + 6t}{9t}}[/tex] is [tex]\mathbf{3t - 18}[/tex]
The expression is given as:
[tex]\mathbf{\frac{t^2 - 36}{3} \div \frac{t^2 + 6t}{9t}}[/tex]
Express as products
[tex]\mathbf{\frac{t^2 - 36}{3} \div \frac{t^2 + 6t}{9t} = \frac{t^2 - 36}{3} \times \frac{9t}{t^2 + 6t}}[/tex]
Express t^2 as difference of two squares
[tex]\mathbf{\frac{t^2 - 36}{3} \div \frac{t^2 + 6t}{9t} = \frac{(t - 6)(t + 6)}{3} \times \frac{9t}{t^2 + 6t}}[/tex]
Factor out t from t^2 + 6t
[tex]\mathbf{\frac{t^2 - 36}{3} \div \frac{t^2 + 6t}{9t} = \frac{(t - 6)(t + 6)}{3} \times \frac{9t}{t(t + 6)}}[/tex]
Delete common factors
[tex]\mathbf{\frac{t^2 - 36}{3} \div \frac{t^2 + 6t}{9t} = \frac{t - 6}{3} \times \frac{9t}{t}}[/tex]
Delete common factors
[tex]\mathbf{\frac{t^2 - 36}{3} \div \frac{t^2 + 6t}{9t} = \frac{t - 6}{3} \times 9}[/tex]
Divide 9 by 3
[tex]\mathbf{\frac{t^2 - 36}{3} \div \frac{t^2 + 6t}{9t} = t - 6 \times 3}[/tex]
So, we have:
[tex]\mathbf{\frac{t^2 - 36}{3} \div \frac{t^2 + 6t}{9t} = 3t - 18}[/tex]
Hence, the simplified quotient of [tex]\mathbf{\frac{t^2 - 36}{3} \div \frac{t^2 + 6t}{9t}}[/tex] is [tex]\mathbf{3t - 18}[/tex]
Read more about quotients at:
https://brainly.com/question/16134410