The expression (x+j)(x-j)(x-k) can be rewritten as x^3-5x^2-4x+t, where j,k, and t are constants. Which of the following is the value of t: 20, 10, -10, -20

Respuesta :

The correct option is:  20

Explanation

The expression [tex](x+j)(x-j)(x-k)[/tex] can be rewritten as [tex]x^3-5x^2-4x+t[/tex]

That means:   [tex](x+j)(x-j)(x-k)= x^3-5x^2-4x+t[/tex]

Now simplifying the left side, we will get....

[tex](x+j)(x-j)(x-k)= x^3-5x^2-4x+t\\ \\ (x^2-j^2)(x-k)= x^3-5x^2-4x+t\\ \\ x^3-kx^2-j^2x+j^2k= x^3-5x^2-4x+t[/tex]

Now comparing the co-effcients of like terms in left and right side, we will get.....

[tex]k=5, j^2=4 \\ \\ and\\ \\ t=j^2k\\ \\ So, t= (4)(5) =20[/tex]

Thus, the value of 't' will be 20.