T what point does the curve have maximum curvature? Y = 7ex (x, y) = what happens to the curvature as x → ∞? Κ(x) approaches as x → ∞.

Respuesta :

Formula for curvature for a well behaved curve y=f(x) is


K(x)= [tex]\frac{|{y}''|}{[1+{y}'^2]^\frac{3}{2}}[/tex]


The given curve is y=7[tex]e^{x}[/tex]


[tex]{y}''=7e^{x}\\ {y}'=7e^{x}[/tex]


k(x)=[tex]\frac{7e^{x}}{[{1+(7e^{x})^2}]^\frac{3}{2}}[/tex]


[tex]{k(x)}'=\frac{7(e^x)(1+49e^{2x})(49e^{2x}-\frac{1}{2})}{[1+49e^{2x}]^{3}}[/tex]

For Maxima or Minima

[tex]{k(x)}'=0[/tex]

[tex]7(e^x)(1+49e^{2x})(98e^{2x}-1)=0[/tex]

→[tex]e^{x}=0∨ 1+49e^{2x}=0∨98e^{2x}-1=0[/tex]

[tex]e^{x}=0  ,  ∧ 1+49e^{2x}=0[/tex]   [not possible ∵there exists no value of x satisfying these equation]

→[tex]98e^{2x}-1=0[/tex]

Solving this we get

x= [tex]-\frac{1}{2}\ln{98}[/tex]

As you will evaluate [tex]{k(x})}''[/tex]<0 at x=[tex]-\frac{1}{2}\ln98[/tex]

So this is the point of Maxima. we get y=7×1/√98=1/√2

(x,y)=[[tex]-\frac{1}{2}\ln98[/tex],1/√2]

k(x)=[tex]\lim_{x\to\infty } \frac{7e^{x}}{[{1+(7e^{x})^2}]^\frac{3}{2}}[/tex]

k(x)=[tex]\frac{7}{\infty}[/tex]

k(x)=0







ACCESS MORE