Formula for curvature for a well behaved curve y=f(x) is
K(x)= [tex]\frac{|{y}''|}{[1+{y}'^2]^\frac{3}{2}}[/tex]
The given curve is y=7[tex]e^{x}[/tex]
[tex]{y}''=7e^{x}\\ {y}'=7e^{x}[/tex]
k(x)=[tex]\frac{7e^{x}}{[{1+(7e^{x})^2}]^\frac{3}{2}}[/tex]
[tex]{k(x)}'=\frac{7(e^x)(1+49e^{2x})(49e^{2x}-\frac{1}{2})}{[1+49e^{2x}]^{3}}[/tex]
For Maxima or Minima
[tex]{k(x)}'=0[/tex]
[tex]7(e^x)(1+49e^{2x})(98e^{2x}-1)=0[/tex]
→[tex]e^{x}=0∨ 1+49e^{2x}=0∨98e^{2x}-1=0[/tex]
[tex]e^{x}=0 , ∧ 1+49e^{2x}=0[/tex] [not possible ∵there exists no value of x satisfying these equation]
→[tex]98e^{2x}-1=0[/tex]
Solving this we get
x= [tex]-\frac{1}{2}\ln{98}[/tex]
As you will evaluate [tex]{k(x})}''[/tex]<0 at x=[tex]-\frac{1}{2}\ln98[/tex]
So this is the point of Maxima. we get y=7×1/√98=1/√2
(x,y)=[[tex]-\frac{1}{2}\ln98[/tex],1/√2]
k(x)=[tex]\lim_{x\to\infty } \frac{7e^{x}}{[{1+(7e^{x})^2}]^\frac{3}{2}}[/tex]
k(x)=[tex]\frac{7}{\infty}[/tex]
k(x)=0