Respuesta :
Answer- Length of the curve of intersection is 13.5191 sq.units
Solution-
As the equation of the cylinder is in rectangular for, so we have to convert it into parametric form with
x = cos t, y = 2 sin t (∵ 4x² + y² = 4 ⇒ 4cos²t + 4sin²t = 4, then it will satisfy the equation)
Then, substituting these values in the plane equation to get the z parameter,
cos t + 2sin t + z = 2
⇒ z = 2 - cos t - 2sin t
∴ [tex]\frac{dx}{dt} = -\sin t[/tex]
[tex]\frac{dy}{dt} = 2 \cos t[/tex]
[tex]\frac{dz}{dt} = \sin t-2cos t[/tex]
As it is a full revolution around the original cylinder is from 0 to 2π, so we have to integrate from 0 to 2π
∴ Arc length
[tex]= \int_{0}^{2\pi}\sqrt{(\frac{dx}{dt})^{2}+(\frac{dy}{dt})^{2}+(\frac{dz}{dt})^{2}[/tex]
[tex]=\int_{0}^{2\pi}\sqrt{(-\sin t)^{2}+(2\cos t)^{2}+(\sin t-2\cos t)^{2}[/tex]
[tex]=\int_{0}^{2\pi}\sqrt{(2\sin t)^{2}+(8\cos t)^{2}-(4\sin t\cos t)[/tex]
Now evaluating the integral using calculator,
[tex]=\int_{0}^{2\pi}\sqrt{(2\sin t)^{2}+(8\cos t)^{2}-(4\sin t\cos t)[/tex] [tex]= 13.5191[/tex]
![Ver imagen InesWalston](https://us-static.z-dn.net/files/d86/02f85c75fee0063c200f7cc4a16cb064.png)
![Ver imagen InesWalston](https://us-static.z-dn.net/files/d69/e0d6ec763a97f9a9ef4268560cc0dba5.png)