Respuesta :
Answer is 0.289nm.
Explanation: The wt % of Fe and wt % of V is given for a Fe-V alloy.
wt % of Fe in Fe-V alloy = 85%
wt % of V in Fe-V alloy = 15%
We need to calculate edge length of the unit cell having bcc structure.
Using density formula,
[tex]\rho_{ave}=\frac{Z\times M_{ave}}{a^3\times N_A}[/tex]
For calculating edge length,
[tex]a=(\frac{Z\times M_{ave}}{\rho_{ave}\times N_A})^{1/3}[/tex]
For calculating [tex]M_{ave}[/tex], we use the formula
[tex]M_{ave}= \frac{100}{\frac{(wt\%)_{Fe}}{M_{Fe}}+\frac{(wt\%)_{V}}{M_V}}[/tex]
Similarly for calculating [tex](\rho)_{ave}[/tex], we use the formula
[tex]\rho_{ave}= \frac{100}{\frac{(wt\%)_{Fe}}{\rho_{Fe}}+\frac{(wt\%)_{V}}{\rho_V}}[/tex]
From the periodic table, masses of the two elements can be written
[tex]M_{Fe}= 55.85g/mol[/tex]
[tex]M_{V}=50.941g/mol[/tex]
Specific density of both the elements are
[tex](\rho)_{Fe}=7.874g/cm^3\\(\rho)_{V}=6.10g/cm^3[/tex]
Putting [tex]M_{ave}[/tex] and [tex]\rho_{ave}[/tex] formula's in edge length formula, we get
[tex]a=\left [\frac{Z\left (\frac{100}{\frac{(wt\%)_{Fe}}{M_{Fe}}+\frac{(wt\%)_{Fe}}{M_{Fe}}} \right )}{N_A\left (\frac{100}{\frac{(wt\%)_V}{\rho_V}+\frac{(wt\%)_V}{\rho_V}} \right )} \right ]^{1/3}[/tex]
[tex]a=\left [\frac{2atoms/\text{unit cell}\left (\frac{100}{\frac{85\%}{55.85g/mol}+\frac{15\%}{50.941g/mol}} \right )}{(6.023\times10^{23}atoms/mol)\left (\frac{100}{\frac{85\%}{7.874g/cm^3}+\frac{15\%}{6.10g/cm^3}} \right )} \right ]^{1/3}[/tex]
By calculating, we get
[tex]a=2.89\times10^{-8}cm=0.289nm[/tex]
The edge of a unit cell, by convention, always connects equivalent locations.
The unit cell edge length for an 85 wt% fe -15wt% v alloy is 0.289 nm.
What are alloys?
An alloy is a mixture of chemical elements, mostly metals, and non-metals, but it must include at least one metal.
Now
Given, the wt% of Fe is 85 and the wt% of V is 15.
To calculate the edge length of the unit cell having a bcc structure.
By formula of density
[tex]\bold{\rho_a_v_e = \dfrac{Z \times M_a_v_e}{a_3 \times N_a} }[/tex]
To calculate the edge length
[tex]\bold{a =( \dfrac{Z \times M_a_v_e}{P_a_v_e \times N_a}) ^\frac{1}{3} }[/tex]
To calculate [tex]M_a_v_e[/tex]
[tex]\bold{M_a_v_e = \dfrac{100}{\dfrac{wt\% (Fe)}{M_F_e} +\dfrac{wt\% (V)}{M_V} } }[/tex]
To calculate the [tex]\bold{\rho_a_v_e}[/tex]
[tex]\bold{\rho_a_v_e = \dfrac{100}{\dfrac{wt\% (Fe)}{\rho_F_e} +\dfrac{wt\% (V)}{\rho_V} } }[/tex]
Now,
Mass of Fe is 50.85 g/mol
Mass of V is 50.941 g/mol
The specific density of both elements:
Fe is 7.874 g
V is 6.10 g
By putting the [tex]M_a_v_e[/tex] and [tex]\bold{\rho_a_v_e}[/tex] formula in edge length formula
[tex]a=[ \dfrac{\bold{ Z( \dfrac{100}{\dfrac{wt\% (Fe)}{M_V} +\dfrac{wt\% (V)}{M_V} }) }}{\bold { N_A( \dfrac{100}{\dfrac{wt\% (Fe)}{\rho_F_e} +\dfrac{wt\% (V)}{\rho_V} }) }}]\dfrac{1}{3}[/tex]
[tex]a=[ \dfrac{\bold{ 2 atoms / unit\;cell ( \dfrac{100}{\dfrac{85\% }{55.85\;g/mol } +\dfrac{15\% }{50.941\'g/mol} }) }}{\bold { 6.023\times 10^2^3\;a/mol( \dfrac{100}{\dfrac{85\%}{7.874 g } +\dfrac{15\%}{ 6.10 g } }) }}]\dfrac{1}{3}[/tex]
[tex]\bold{a =2.89 \times 10^-^8\; cm = 0.289\;cm}[/tex]
Thus, the unit cell edge length is 0.289 cm.
Learn more about unit cell edge, here:
https://brainly.com/question/1594030