Answer: The null and the alternative hypotheses are given below:
[tex]H_{0}:\mu=18.6[/tex]
[tex]H_{a}:\mu<18.6[/tex]
Under null hypothesis, the test statistic is:
[tex]z=\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}} }[/tex]
[tex]=\frac{18.4730-18.6}{\frac{3.9045}{\sqrt{65}} }[/tex]
[tex]=-0.26[/tex]
[tex]\therefore z=-0.26[/tex]
Now we have to find the left tailed critical value at 0.01 significance level using the standard normal table.
The critical value is:
[tex]z_{critical}=-2.33[/tex]
Since the test statistic is -0.26 lies in acceptance region because the critical region is beyond -2.33, therefore, we fail to reject the null hypothesis.