Respuesta :

Refer to the attached image.

Given: [tex]m \angle A = 65^\circ[/tex] and measure of exterior angle at C = [tex]117^\circ[/tex].

We have to determine the measure of angle B and angle BCA.

By applying exterior angle property of the triangle which states:

"An exterior angle of a triangle is equal to the sum of the opposite interior angles".

So, exterior angle C = [tex]m \angle A + m \angle B[/tex]

[tex]117^\circ = 65^\circ+ m \angle B[/tex]

[tex]m \angle B = 52^\circ[/tex]

Now, applying angle sum property in triangle ABC which states:

"The sum of all the angles of a triangle is 180 degrees".

[tex]m \angle A + m \angle B + m \angle BCA = 180^\circ[/tex]

[tex]65^\circ + 52^\circ + m \angle BCA = 180^\circ[/tex]

[tex]117^\circ + m \angle BCA = 180^\circ[/tex]

[tex]m \angle BCA = 180^\circ - 117^\circ[/tex]

[tex]m \angle BCA =63^\circ[/tex]

Therefore, the measure of [tex]m \angle B = 52^\circ[/tex] and [tex]m \angle BCA =63^\circ[/tex].

Ver imagen pinquancaro
ACCESS MORE