Respuesta :

[tex](-2x^3 +x -5) and (x^3 -3x-4)[/tex]

(a) To find product we multiply both expressions

First distribute -2x^3 inside the second parenthesis [tex](x^3 -3x-4)[/tex]

[tex]-2x^6 + 6x^4 +8x^3[/tex]

next  distribute x inside the second parenthesis [tex](x^3 -3x-4)[/tex]

[tex](x^4 -3x^2-4x)[/tex]

Next distribute -5 inside the second parenthesis [tex](x^3 -3x-4)[/tex]

[tex](-5x^3 + 15x + 20)[[/tex]

Finally we add all the product terms we got

[tex]-2x^6 + 6x^4 +8x^3 + x^4 -3x^2-4x + -5x^3 + 15x + 20[/tex]

Combine like terms

[tex]-2x^6 + 7x^4 + 3x^3 - 3x^2 + 11 x + 20[/tex]

(b) yes they are same

Because interchanging of expression does not affect the product

For example 5 * 2 = 2*5 they are same.

So both the product are equal


ACCESS MORE