Respuesta :

(a) [tex](\frac{1x}{2} - \frac{1}{4}) and 5x^2 -2x-6[/tex]

To find product ,

first multiply [tex](\frac{1x}{2})[/tex] with [tex] 5x^2 -2x-6[/tex]

[tex](\frac{1x}{2})* (5x^2 -2x-6) = \frac{5x^3}{2} - x^2 -3x[/tex]

Now  multiply [tex](\frac{-1}{4}) [/tex] with [tex] 5x^2 -2x-6[/tex]

[tex](\frac{-1}{4}) * (5x^2 -2x-6) = -\frac{5x^2}{4} + \frac{x}{2}  + \frac{3}{2}[/tex]

Now we combine it

[tex]\frac{5x^3}{2} - x^2 -3x -\frac{5x^2}{4} + \frac{x}{2}  + \frac{3}{2}[/tex]

[tex]\frac{5x^3}{2} - \frac{9x^2}{4} - \frac{5x}{2} + \frac{3}{2}[/tex]

(b) No, the products are not same

Because [tex](\frac{1x}{2} - \frac{1}{4}) is interchanged as (\frac{1x}{4} - \frac{1}{2}) [/tex]. when the terms are interchanged then the product will not be same