Respuesta :

So here are the steps to finding an inverse of a function:

  1. Change f(x) to y
  2. Switch the positions of x and y
  3. Solve for y
  4. Change y to f^1(x)

Firstly, apply the first two steps:

[tex]y=\frac{3x}{x-2}\\\\x=\frac{3y}{y-2}[/tex]

Now, let's solve for y. Firstly, multiply both sides by y-2:

[tex]x(y-2)=3y\\xy-2x=3y[/tex]

Next, subtract xy on both sides:

[tex]-2x=3y-xy[/tex]

Next, factor out y on the right side of the equation:

[tex]-2x=(3-x)y[/tex]

Lastly, divide both sides by 3 - x:

[tex]-\frac{2x}{3-x}=y[/tex]

Now, apply the last step and your final answer will be [tex]-\frac{2x}{3-x}=f^{-1}(x)[/tex]

ACCESS MORE