Respuesta :
The answer to the question is the second and the fourth equations
Answer: The correct equations are
[tex](b)~5x^3(6x^4)=30x^7,\\\\(d)~5y^4(2y^5)=10y^9.[/tex]
Step-by-step explanation: We are given to select the correct equations from the following :
[tex](a)~3b^3(-2b^4)=-6b^{-12},\\\\(b)~5x^3(6x^4)=30x^7,\\\\(c)~4c^4(3c^2)=12c^8,\\\\(d)~5y^4(2y^5)=10y^9.[/tex]
We will be using the following property of exponents :
[tex]a^b\times a^c=a^{b+c}.[/tex]
We have
For equation (a)
[tex]L.H.S.=3b^3(-2b^4)=-6b^{3+4}=-6b^7\neq-6b^{12}=R.H.S.[/tex]
So, this equation is not correct.
For equation (b)
[tex]L.H.S.=5x^3(6x^4)=30x^{3+4}=30b^7=R.H.S.[/tex]
So, this equation is CORRECT.
For equation (c)
[tex]L.H.S.=4c^4(3c^2)=12c^{4+2}=12c^6\neq12c^8=R.H.S.[/tex]
So, this equation is not correct.
For equation (d)
[tex]L.H.S.=5y^4(2y^5)=10y^{4+5}=10y^9=R.H.S.[/tex]
So, this equation is CORRECT.
Thus, the correct equations are
[tex](b)~5x^3(6x^4)=30x^7,\\\\(d)~5y^4(2y^5)=10y^9.[/tex]