A 0.999-g sample of a metal chloride, mcl2, is dissolved in water and treated with excess aqueous silver nitrate. The silver chloride that formed weighed 1.286 g. Calculate the atomic mass of m.

Respuesta :

Mass of silver chloride formed = 1.286 g

Molar mass of silver chloride = 143.32 g/mol AgCl

Converting mass to moles of AgCl using the molar mass:

[tex]1.286 g AgCl *\frac{1mol}{143.32g}= 0.00897 mol AgCl[/tex]

The balanced chemical equation between metal chloride and silver nitrate can be represented as,

[tex]MCl_{2}(aq)+2AgNO_{3}(aq)-->2AgCl(s)+M(NO_{3})_{2}(aq)[/tex]

Calculating the moles of MCl2 from moles of AgCl that form:

[tex]0.00897 mol AgCl*\frac{1molMCl_{2} }{2molAgCl} =0.00449mol MCl_{2}[/tex]

The given mass of [tex]MCl_{2}[/tex]=0.999 g

Molar mass of [tex]MCl_{2}[/tex]=[tex]\frac{0.999g}{0.00449mol} =222.5g/mol[/tex]

Molar mass of M= Molar mass of [tex]MCl_{2}[/tex]- 2 (Molar mass of Cl)

                          =151.6g/mol

Atomic mass of M is [tex]\boxed{151.6\text{ g}}[/tex] .

Further Explanation:

Given reaction occurs as follows:

[tex]\text{MCl}_2(aq)+2\text{AgNO}_3(aq)\rightarrow\text{2AgCl}(s)+\text{M}\left(\text{NO}_3}\right)_2(aq)[/tex]

The formula to calculate moles of AgCl is as follows:

[tex]\text{Moles of AgCl}=\dfrac{\text{Mass of AgCl}}{\text{Molar mass of AgCl}}[/tex]                ...... (1)

Substitute [tex]1.286\text{ g}[/tex] for mass of AgCl and [tex]143.32\text{ g/mol}[/tex] for molar mass of AgCl in equation (1).

[tex]\begin{aligned}\text{Moles of AgCl}=&\dfrac{\text{1.286 g}}{\text{143.32 g/mol}}\\=&0.00897\text{ mol}\end{aligned}[/tex]

According to the balanced chemical reaction, one mole of [tex]\text{MCl}_2[/tex] reacts with two moles of [tex]\text{AgNO}_3[/tex] to form two moles of AgCl and one mole of [tex]\text{M}\left(\text{NO}_3\right)_2[/tex], So stoichiometric ratio between [tex]\text{MCl}_2[/tex]  and AgCl is 1:2.

Since two moles of AgCl are produced by one mole of [tex]\text{MCl}_2[/tex] , number of moles of [tex]\text{MCl}_2[/tex] that can produce 0.00897 moles of AgCl can be calculated as follows:

[tex]\begin{aligned}\text{Moles of MCl}_2=&\left(\dfrac{\text{1 mol of MCl}_2}{\text{2 mol of AgCl}}\right)\left(0.00897\text{mol AgCl}\right)\\=&0.00449\text{ mol}\end{aligned}[/tex]

The formula to calculate number of moles of [tex]\text{MCl}_2[/tex] is as follows:

[tex]\text{Moles of MCl}_2=\dfrac{\text{Mass of MCl}_2}{\text{Molar mass of MCl}_2}[/tex]                              ...... (2)

Rearrange equation (2) to calculate molar mass of [tex]\text{MCl}_2[/tex] .[tex]{\text{Molar mass of MCl}_2}=\dfrac{\text{Mass of MCl}_2}{\text{Moles of MCl}_2}[/tex]                                ...... (3)

Substitute 0.999 g for mass of [tex]\text{MCl}_2[/tex] and 0.00449 mol for moles of [tex]\text{MCl}_2[/tex]  in equation (3).

[tex]\begin{aligned}{\text{Molar mass of MCl}_2}=&\dfrac{\text{0.999 g}}{\text{0.00449 mol}}\\=&222.5\text{ g/mol}\end{aligned}[/tex]

The formula to calculate molar mass of [tex]\text{MCl}_2[/tex]  is as follows:

[tex]\text{Molar mass of MCl}_2=\left[1\left(\text{Atomic mass of M}\right)+\\\\2\left(\text{Atomic mass of Cl}\right)\right]}[/tex]  ....... (4)

Rearrange equation (4) to calculate atomic mass of M.

[tex]\text{Atomic mass of M}=\left[\text{Molar mass of MCl}_2-2\left(\text{Atomic mass of Cl}\right)\right][/tex]   ...... (5)

Substitute 222.5 g/mol for molar mass of [tex]\text{MCl}_2[/tex] and 35.453 g for atomic mass of Cl in equation (5).

[tex]\begin{aligned}\text{Atomic mass of M}=&222.5\text{ g}-2\left(35.453\text{ g}\right)\\=&151.6\text{ g}\end{aligned}[/tex]

Therefore atomic mass of M is 151.6 g.

Learn more:

1. Calculate the moles of chlorine in 8 moles of carbon tetrachloride: https://brainly.com/question/3064603

2. Calculate the moles of ions in the solution: https://brainly.com/question/5950133

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Mole concept

Keywords: AgCl, MCl2, 151.6 g, atomic mass, molar mass, 222.5 g/mol, 35.453 g, 1.286 g, 0.999 g, stoichiometric ratio, 1:2.

RELAXING NOICE
Relax