For triatomic gas, [tex]C_v = 3R[/tex] (given)
For monatomic gas, [tex]C_v =\frac{3}{2}R[/tex]
For diatomic gas, [tex]C_v =\frac{5}{2}R[/tex]
Let x mol of triatomic gas be added to 11 mol of monatomic gas
Internal energy of a gas is determined by:
[tex]U = nC_vT[/tex]
where U is internal energy, n is number of moles, [tex]C_v[/tex] is specific heat capacity at constant volume, and T is temperature.
So, for triatomic gas, internal energy, [tex]U_1 = x\times 3R\times T[/tex]
For monatomic gas, internal energy, [tex]U_1 = 11\times \frac{3}{2}R\times T[/tex]
Total energy, [tex]U = U_1 + U_2[/tex]
[tex]3xRT+16.5RT = (3x+16.5)RT[/tex]
For mixture of gas, [tex]C_v[/tex] is given as:
[tex]C_v = \frac{1}{n}\frac{\Delta U}{\Delta T}[/tex]
[tex]C_v = \frac{1}{n}((3x+16.5)R)[/tex]
Substituting n = 11 + x mol
Substituting the value of [tex]C_v[/tex] for diatomic gas:
[tex]\frac{5}{2}R = \frac{1}{11+x}((3x+16.5)R)[/tex]
[tex]\frac{5}{2} = \frac{1}{11+x}(3x+16.5)[/tex]
[tex]55+5x = 6x+33[/tex]
[tex]6x - 5x = 55 - 33[/tex]
[tex]x = 22[/tex]
Hence, [tex]22 mol[/tex] of triatomic gas must be added to [tex]11 mol[/tex] of monatomic gas to get a mixture whose thermodynamic behavior was like that of a diatomic gas.