Suppose that we roll a red and a black die. Let a = "the black die shows a 2 or a 5", b = "the sum of the two dice is at least 7". Are events a and b independent?

Respuesta :

Answer: No, A and B are not independent events.

∵ it does not satisfy the rule of probability for independent events i.e.

P(A∩B)=P(A).P(B)

Explanation:

Let A be the event that  the black dice shows 2 or 5

Let B be the event that the sum of two dice is atleast 7

Sample space of A={[tex](R_1,B_2)(R_2,B_2)(R_3,B_2)(R_4,B_2)[/tex]([tex](R_5,B_2),(R_6,B_2),(R_1,B_5),(R_2,B_5),(R_3,B_5),(R_4,B_5),(R_5,B_5),(R_6,B_5)[/tex]}

Sample space of B= { [tex](R_1,B_6),(R_2,B_5),(R_2,B_6),(R_3,B_4),(R_3,B_5),(R_3,B_6),[/tex],[tex](R_4,B_3),(R_4,B_4),(R_4,B_5),(R_4,B_6),(R_5,B_2),(R_5,B_3),(R_5,B_4),(R_5,B_5)[/tex], [tex](R_5,B_6),(R_6,B_2),(R_6,B_3),(R_6,B_4),(R_6,B_5),(R_6,B_5)[/tex]}

P(A)= [tex]\frac{\text{No.of favourable outcomes}}{\text{Total no.of observation}}[/tex]

⇒P(A)=[tex]\frac{12}{36}[/tex]

⇒P(A)=[tex]\frac{1}{3}[/tex]

Similarly,

P(B)=[tex]\frac{20}{36}[/tex]

⇒ P(B) =[tex]\frac{5}{9}[/tex]

Now for Sample Space of (A∩B)= {[tex](R_5,B_2)(R_6,B_2)(R_2,B_5)(R_3,B_5)(R_4,B_5)(R_5,B_5)(R_6,B_5)[/tex]}

So, P(A∩B)= [tex]\frac{7}{36}[/tex]

Now we apply the formula,

P(A).P(B)=P(A∩B)

[tex]\frac{1}{3}[/tex]×[tex]\frac{5}{9}[/tex] ≠ [tex]\frac{7}{36}[/tex]

[tex]\frac{5}{27}[/tex] ≠ [tex]\frac{7}{36}[/tex]

∴ The events A and B are not independent events.




ACCESS MORE