Answer: No, A and B are not independent events.
∵ it does not satisfy the rule of probability for independent events i.e.
P(A∩B)=P(A).P(B)
Explanation:
Let A be the event that the black dice shows 2 or 5
Let B be the event that the sum of two dice is atleast 7
Sample space of A={[tex](R_1,B_2)(R_2,B_2)(R_3,B_2)(R_4,B_2)[/tex]([tex](R_5,B_2),(R_6,B_2),(R_1,B_5),(R_2,B_5),(R_3,B_5),(R_4,B_5),(R_5,B_5),(R_6,B_5)[/tex]}
Sample space of B= { [tex](R_1,B_6),(R_2,B_5),(R_2,B_6),(R_3,B_4),(R_3,B_5),(R_3,B_6),[/tex],[tex](R_4,B_3),(R_4,B_4),(R_4,B_5),(R_4,B_6),(R_5,B_2),(R_5,B_3),(R_5,B_4),(R_5,B_5)[/tex], [tex](R_5,B_6),(R_6,B_2),(R_6,B_3),(R_6,B_4),(R_6,B_5),(R_6,B_5)[/tex]}
P(A)= [tex]\frac{\text{No.of favourable outcomes}}{\text{Total no.of observation}}[/tex]
⇒P(A)=[tex]\frac{12}{36}[/tex]
⇒P(A)=[tex]\frac{1}{3}[/tex]
Similarly,
P(B)=[tex]\frac{20}{36}[/tex]
⇒ P(B) =[tex]\frac{5}{9}[/tex]
Now for Sample Space of (A∩B)= {[tex](R_5,B_2)(R_6,B_2)(R_2,B_5)(R_3,B_5)(R_4,B_5)(R_5,B_5)(R_6,B_5)[/tex]}
So, P(A∩B)= [tex]\frac{7}{36}[/tex]
Now we apply the formula,
P(A).P(B)=P(A∩B)
[tex]\frac{1}{3}[/tex]×[tex]\frac{5}{9}[/tex] ≠ [tex]\frac{7}{36}[/tex]
[tex]\frac{5}{27}[/tex] ≠ [tex]\frac{7}{36}[/tex]
∴ The events A and B are not independent events.