A) y = -2x ⇒ slope (m) = [tex]\frac{-2}{1}[/tex]
B) 2x + y = 6
-2x -2x
y = -2x + 6 ⇒ slope (m) = [tex]\frac{-2}{1}[/tex]
C) y = [tex]\frac{1}{2}[/tex]x + 6 ⇒ slope (m) = [tex]\frac{1}{2}[/tex]
D) x - 2y = 9
-x -x
-2y = -x + 9
[tex]\frac{-2}{-2}[/tex]y = [tex]\frac{-1}{-2}[/tex]x + [tex]\frac{9}{-2}[/tex]
y = [tex]\frac{1}{2}[/tex]x - 4.5 ⇒ slope (m) = [tex]\frac{1}{2}[/tex]
A rectangle has 90° angles so two slopes must be the same and the other two slopes must be perpendicular (opposite sign and reciprocal) to the first two slopes.
Slopes: [tex]\frac{-2}{1}[/tex], [tex]\frac{-2}{1}[/tex], [tex]\frac{1}{2}[/tex], [tex]\frac{1}{2}[/tex].
Answer: YES. Two lines have a slope of [tex]\frac{1}{2}[/tex]and the other two lines have a perpendicular slope of [tex]\frac{-2}{1}[/tex],