a quadrillateral has sides with equations y = -2x, 2x+y=6, y=1/2x+6, and x-2y=9. is the figure a rectangle? explain your reasoning

Respuesta :

A) y = -2x  ⇒ slope (m) = [tex]\frac{-2}{1}[/tex]

B)  2x + y = 6

   -2x        -2x  

            y = -2x + 6  ⇒ slope (m) = [tex]\frac{-2}{1}[/tex]

C) y = [tex]\frac{1}{2}[/tex]x + 6  ⇒  slope (m) = [tex]\frac{1}{2}[/tex]

D) x - 2y = 9

  -x           -x  

      -2y = -x + 9

      [tex]\frac{-2}{-2}[/tex]y = [tex]\frac{-1}{-2}[/tex]x + [tex]\frac{9}{-2}[/tex]

         y =  [tex]\frac{1}{2}[/tex]x - 4.5  ⇒  slope (m) = [tex]\frac{1}{2}[/tex]

A rectangle has 90° angles so two slopes must be the same and the other two slopes must be perpendicular (opposite sign and reciprocal) to the first two slopes.

Slopes:  [tex]\frac{-2}{1}[/tex], [tex]\frac{-2}{1}[/tex], [tex]\frac{1}{2}[/tex], [tex]\frac{1}{2}[/tex].

Answer: YES.  Two lines have a slope of [tex]\frac{1}{2}[/tex]and the other two lines have a perpendicular slope of [tex]\frac{-2}{1}[/tex],