Respuesta :

Answer:

Given the polynomial: [tex](3x-8)(2x^2+4x-9)[/tex]

Since, arranging of polynomial can be made by forming the given polynomial into the general form.

Multiply the following  polynomials are;

[tex](3x)(2x^2+4x-9)-8(2x^2+4x-9))[/tex]

Using distributive property: [tex]a\cdot(b+c) = a\cdot b+a\cdot c[/tex]

[tex](6x^3+12x^2-27x)- (16x^2+32x -72)[/tex]

Remove the parenthesis; we get;

[tex]6x^3+12x^2-27x- 16x^2 -32x +72[/tex]

Combine like terms;

[tex]6x^3-4x^2-59x+72[/tex]

⇒This is the general form of the polynomial equation.

Since, the given polynomials can be written from the order of powers i.e,

[tex]6x^3-4x^2-59x+72[/tex]

To arrange this polynomial in descending order means to arrange the powers of variables in each term in descending order.

Therefore, the resulting polynomial in descending orders is, [tex]6x^3-4x^2-59x+72[/tex]