What is the reason for Statement 5 of the two-column proof?
Given: ∠JNL and ∠MNK are vertical angles. m∠MNK=90°
Prove: ∠JNL is a right angle.

Statements Reasons
1. ∠JNL and ∠MNK are vertical angles. Given
2. ∠JNL≅∠MNK vertical Angles Theorem
3. m∠JNL=m∠MNK Angle Congruence Postulate
4. m∠MNK=90° Given
5. m∠JNL=90° ?
6. ∠JNL is a right angle. Definition of right angle

-Angle Congruence Postulate
-Angle Addition Postulate
-Linear Pair Postulate
-Substitution Property of Equality

Respuesta :

Given: ∠JNL and ∠MNK are vertical angles and  m∠MNK=90°

Prove: ∠JNL is a right angle.

   Statements                                                     Reasons

1.  ∠JNL and ∠MNK are vertical angles.             Given

2. [tex]\angle JNL \cong \angle MNK[/tex]        Vertical angle theorem

3. [tex]m \angle JNL = m \angle MNK[/tex]        Angle congruence postulate

4.  [tex]m \angle MNK = 90^\circ[/tex]                Given

5. [tex]m \angle JNL = 90^\circ[/tex]                 Substitution Property of Equality

Since, the measures of angle JNL and MNK are equal and the measure of angle MNK is 90 degrees. therefore, by substitution property of equality, both the angles JNL and MNK will have an equal measure.

Therefore,  [tex]m \angle JNL = 90^\circ[/tex]

6. ∠JNL is a right angle.                                     Definition of right angle

Answer:D

Step-by-step explanation: