It is given that the height of the tower is
[tex]h=183 ft.[/tex]
The uncertainty the measurement of this height is
[tex]\Delta h=0.2 ft[/tex]
Drop time is measured as:
[tex]t=3.5s[/tex]
The uncertainty in measurement of time is:
[tex]\Delta t=0.5 s[/tex]
Using the equation of motion: [tex]h=ut+\frac{1}{2} at^2[/tex] where, [tex]h[/tex] is the distance covered, [tex]u[/tex] is the initial velocity, [tex]a[/tex] is the acceleration and [tex]t[/tex] is the time.
[tex] u=0[/tex] (because canon ball is in free fall). we need to calculate the value of a=g.
[tex]\Rightarrow h=\frac{1}{2}gt^2[/tex]
[tex]\Rightarrow g=\frac{2h}{t^2}\\ \Rightarrow g=\frac{2\times 183ft}{(3.5s)^2}=29.87 ft/s^2[/tex]
The uncertainty in this value is given by:
[tex]\Delta g=g\sqrt{(\frac{\Delta h}{h})^2+(\frac{2\Delta t}{t})^2}[/tex]
Substitute the values:
[tex]\Delta g=29.87\sqrt{(\frac{0.2 }{183})^2+(\frac{2\times 0.5}{3.5})^2}=29.87\sqrt{1.19\times 10^{-6}+0.08}=29.87\times \sqrt{0.08}=29.87\times 0.28=8.44 ft/s^2[/tex]