Respuesta :
Let 'x' pounds of regular coffee and 'y' pounds of kona coffee be combined together to get a 20 pound mixture.
So, [tex]x+y = 20[/tex]
x = 20-y (Equation 1)
Since, regular coffee is to be sold at $4 per pound and kona coffee at $11.50 per pound to get 20 pounds of a mixture worth $6 per pound.
So, [tex](4 \times x) +(11.50 \times y) = (20 \times 6)[/tex]
[tex]4x + 11.50y = 120[/tex]
Substituting the value of 'x' from equation 1, we get
4(20-y) + 11.50y = 120
[tex]80-4y + 11.50y = 120[/tex]
[tex]80+7.5y = 120[/tex]
[tex]7.5y = 40[/tex]
y = 5.3
So, x = 20- y
x = 20-5.3
x = 14.7
So, 14.7 pounds of regular coffee and 5.3 pounds of kona coffee are mixed to get a 20 pound mixture.
Selling price of regular coffee = $4 per pound
Selling price of kona coffee = $11.5 per pound
Total mixture required = 20 pounds
Selling price of mixture = $6 per pound
Let quantity of regular coffee be 'a' and that of kona coffee be 'b'
⇒ Total mixture required = a + b
⇒ 20 = a + b ..................... (i)
Selling price of one pound of mixture = Price of total mixture ÷ Total pounds of mixture
⇒ 6 = [(4*a) + (11.5*b)] ÷ (a+b)
⇒ 6*a + 6*b = 4*a + 11.5*b
⇒ 2a = 5.5b
⇒ 20a = 55b
⇒ 4a = 11b
⇒ a = [tex]\frac{11}{4}[/tex]b ....................... (ii)
Substituting the value of (ii) in (i)
[tex]\frac{11}{4}[/tex]b + b = 20
⇒ 11b + 4b = 20 * 4
⇒ 15b = 80
⇒ 3b = 16
⇒ b = [tex]\frac{16}{3}[/tex]
and a = [tex]\frac{11}{4}[/tex] * [tex]\frac{16}{3}[/tex]
⇒ a = [tex]\frac{44}{3}[/tex]
So, to make the mixture we would require [tex]\frac{44}{3}[/tex] of regular coffee and [tex]\frac{16}{3}[/tex] of kona coffee.