Please answer!!!
If cos0=-4/7, what are the values of sin0 and tan0?
![Please answer If cos047 what are the values of sin0 and tan0 class=](https://us-static.z-dn.net/files/da9/093aef293b8a49798e442f67e6706028.png)
let's first off notice something, the hypotenuse is never negative, since it's just a radius unit, so if the cosine is -(4/7), the hypotenuse of 7, is not the negative one, is the 4 above, so is really (-4)/7 in the fraction.
[tex]\bf cos(\theta )=\cfrac{\stackrel{adjacent}{-4}}{\stackrel{hypotenuse}{7}}~\hspace{5em}\textit{let's find they \underline{opposite side}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \pm\sqrt{c^2-a^2}=b \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases}[/tex]
[tex]\bf \pm\sqrt{7^2-(-4)^2}=b\implies \pm\sqrt{49-16}=b\implies \boxed{\pm\sqrt{33}=b} \\\\[-0.35em] ~\dotfill\\\\ sin(\theta )=\cfrac{\stackrel{opposite}{\pm \sqrt{33}}}{\stackrel{hypotenuse}{7}}~\hspace{7em}tan(\theta )=\cfrac{\stackrel{opposite}{\pm \sqrt{33}}}{\stackrel{adjacent}{-4}}\implies tan(\theta )=\cfrac{\stackrel{opposite}{\mp \sqrt{33}}}{\stackrel{adjacent}{4}}[/tex]